DATA SHEET TB 26d #### BR 26d · Stainless Steel Ball Valve DIN- and ANSI-Version # CE #### **Application** Tight-closing Ball valve made of stainless steel for corrosive media, especially to meet high process requirements in chemical plants: - Nominal size DN 15 to 150 and NPS½ to 4 - Nominal pressure PN 16 and 40 as well as cl150 and cl300 - Temperatures -10°C to 200 °C, (optional -60 °C / -80 °C to +230 °C) The control equipment consists of a stainless steel ball valve and a pneumatic quarter-turn actuator, a manual gear or a lever. The valves are designed according to the modular-assembly principle have the following features: #### Design - · Not spring supported - · Spring supported sealing system - Fire-safe version with test certificate - API 607 6th ed. & EN ISO 10497 - British Standards B.S. 6755 Part 2 - TA-Luft 2021 / DIN EN ISO 15848-1 #### Further features - Valve body made of stainless steel 1.4408/A351 CF8M - Seat ring spring supported on one side - Exchangeable seat rings - On/off operation with leakage rate A acc. to DIN EN 12266-1, bubble-tight version - Shaft sealed by a self-adjusting M-PTFE packing, support ed by disc springs, maintenance-free - Blowout-proof shaft made of 1.4462 - DIN face-to-face dimensions Series 1 and 27 acc. to EN 558 - ANSI face-to-face dimensions acc. to ASME B16.10-2000 - Connecting flange for actuators acc. to DIN ISO 5211 - Double body seal system - · Antistatic discharge #### **Versions** BR 26d Ball valve are optionally available in the following versions: - Ball valve with lever - Ball valve with manual gear - Ball valve with pneumatic quarter-turn actuator (see associated data sheet for details) - Acc. to customer specifications Bild 1: BR 26d Ball valve with Lever Bild 2: BR 26d Ball valve with BR 31a Quarter-turn actuator PFEIFFER Chemie-Armaturenbau GmbH · Hooghe Weg 41 · 47906 Kempen · Germany Phone: +49 2152 2005-0 · Fax: +49 2152 1580 Tabelle 1: Parts list | Item | Description | |------|---------------------| | 1 | Main body | | 2 | Side body | | 3 | Ball | | 4 | Seat ring | | 5 | Control shaft | | 6 | Stuffing box flange | | 7 | Bearing bush | | 8 | Bearing bush | | 9 | Sealing | | 10 | Sealing | | Item | Description | |------|--------------------| | 11 | Disc spring set | | 12 | Packing | | 13 | Screw | | 14 | Screw/ stud bolt | | 15 | Nut | | 16 | Bush | | 17 | Sealing ring | | 18 | Bush | | 19 | Disc spring | | 20 | Disc spring jacket | ¹⁾ Depending on the nominal width, stud bolts can be fitted with nuts or screws. #### **Special versions** - Valve body made of steel 1.0619 / A216 WCB - Backup shaft seal (Safety stem extension) - Heating jacket, stainless steel with various connection - Flange versions acc. to DIN EN 1092 - · Ball valve for controlling by characteristic seat ring - Body, seal or ball modifications - High temperature version up to 230 °C ## **Principle of operation** The BR 26d Ball valves allow the full flow through the valve in either direction. The ball (3) with its cylindrical passage slew around the control shaft. The opening angle of the ball determines the flow through between the body (1) and bore. The ball (3) is sealed by exchangeable seat rings (4). The ball shaft is sealed by a M-PTFE packing (12) which is spring supported by disc springs positioned above the packing. The control shaft is equipped with a lever (21). Optionally, a pneumatic actuator or gear-operated actuator can be assembled. # i Note BR 26d Ball valves can also be used for control applications. Refer to the data sheet ▶ DB 20a-kd. # i Note Before using the valve in hazardous areas, check whether this is possible according to ATEX 2014/34/EU by referring to the mounting and operating instructions \triangleright EB 26d. #### Fail-safe position Depending on assembly position of the pneumatic actuator, the valve has two fail-safe positions which become effective when the air pressure in the actuator is relieved or when the supply air fails: #### Ball valve with fail-close actuator While air failure, the valve is closed. The valve opens when the signal pressure increases, acting against the force of the springs. #### • Ball valve with fail-open actuator While air failure, the valve opens. The valve closes when the signal pressure increases, acting against the force of the springs. ## **Optional material combinations** For best adaption to process conditions, it is possible to optimize ball valve by modification of materials (eg. body, control shaft, ball and sealing). #### **Additional accessories** The following accessories are available (separately or in combination): - · Locking device - Shaft extension (100 mm, standard) - Pneumatic or electric quarter-turn actuators - Positioner (with optional ball valve for control application) - · Limit switches - Solenoid valves - Filter regulator - · Heating jacket - Ball valve for control application by characteristic seat ring Further accessories are possible on customer request. ## Advantages of the live-loaded sealing system - Maintenance-free and self-adjusting - Highest tightness, even under extreme pressure and temperature conditions - High durability # Advantages of spring supported sealing system - Two active seat rings - Reduced in increase torque by rising temperatures. Therefore smaller actuators are possible for automation - All in all: Extremely economic! ### Pressure-temperature diagrams for DIN version The operating range is given by the pressure-temperature diagram. Process data and medium may influence the values in the diagram. Body material: 1.4408 (DIN EN 1092-1) Sealing ring material: M-PTFE / PTFE Tabelle 2: Pressure-temperature values PN16 | | | Temperature in °C | | | | | | | | | | | | | | | | |----------|------|-------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|----| | DN | -80 | -60 | -10 | 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 230 | | | 15 25 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 15.9 | 15.7 | 15.5 | 15.2 | 14.9 | 10.0 | 8.0 | | | 32 50 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 15.9 | 15.7 | 15.5 | 15.2 | 14.0 | 9.0 | 7.0 | F | | 65 80 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 15.9 | 15.7 | 15.5 | 15.2 | 13.0 | 8.0 | 6.0 | 5 | | 100 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 15.9 | 15.7 | 15.5 | 15.2 | 11.0 | 7.0 | 5.0 | ir | | 125 150 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 15.9 | 15.7 | 15.5 | 15.2 | 8.0 | 4.0 | 1.5 | | | Standard | | | | | | | | | | | | | | | | | | **Tabelle 3:** Pressure-temperature values PN40 | | | | | | | | Te | mpera | ture in | °C | | | | | | | | |-------|------|------|------|------|------|------|------|-------|---------|------|------|------|------|------|------|-----|----| | DN | -80 | -60 | -10 | 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 230 | | | 15 25 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 37.0 | 32.0 | 25.0 | 18.0 | 10.0 | 8.0 | | | 32 50 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 39.5 | 33.5 | 28.0 | 22.0 | 15.0 | 9.0 | 7.0 | P | | 65 80 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 38.0 | 35.5 | 31.0 | 26.5 | 20.0 | 13.5 | 8.0 | 6.0 | in | | 100 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 32.0 | 28.3 | 25.0 | 18.0 | 12.0 | 7.0 | 5.0 | | | | | | | | | | | Stan | dard | | | | | | | | | ## Pressure-temperature diagrams for ANSI version The operating range is given by the pressure-temperature diagram. Process data and medium may influence the values in the diagram. Body material: A351-CF8M (ASME B16.34 / ASME B16.5) Sealing ring material: M-PTFE / PTFE **Tabelle 4:** Pressure-temperature values cl150 | | | Temperature in °C | | | | | | | | | | | | | | | | |-------|----------|-------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|-------------| | NPS | -80 | -60 | -10 | 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 230 | | | 1/2 1 | 19.0 | 19.0 | 19.0 | 19.0 | 19.0 | 19.0 | 17.9 | 17.0 | 16.2 | 15.6 | 15.0 | 14.6 | 14.1 | 13.7 | 10.0 | 8.0 | | | 1 ¼ 2 | 19.0 | 19.0 | 19.0 | 19.0 | 19.0 | 19.0 | 17.9 | 17.0 | 16.2 | 15.6 | 15.0 | 14.6 | 14.1 | 13.7 | 9.0 | 7.0 | | | 2½ 3 | 19.0 | 19.0 | 19.0 | 19.0 | 19.0 | 19.0 | 17.9 | 17.0 | 16.2 | 15.6 | 15.0 | 14.6 | 14.1 | 13.5 | 8.0 | 6.0 | Dru
in l | | 4 | 19.0 | 19.0 | 19.0 | 19.0 | 19.0 | 19.0 | 17.9 | 17.0 | 16.2 | 15.6 | 15.0 | 14.6 | 14.1 | 12.0 | 7.0 | 5.0 | | | 6 | 19.0 | 19.0 | 19.0 | 19.0 | 19.0 | 19.0 | 17.9 | 17.0 | 16.2 | 15.6 | 15.0 | 14.6 | 14.0 | 8.0 | 4.0 | 1.5 | | | | Standard | | | | | | | | | | | | | | | | | Tabelle 5: Pressure-temperature values cl300 | | Temperature in °C | | | | | | | | | | | | | | | | | |----------|--|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|----| | NPS | -80 | -60 | -10 | 0 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 230 | | | 1/2 1 | 49.6 | 49.6 | 49.6 | 49.6 | 49.6 | 49.6 | 46.9 | 44.5 | 42.2 | 40.7 | 37.0 | 32.0 | 25.0 | 18.0 | 10.0 | 8.0 | | | 1 ¼ 2 | | | | | | | | | | | | | | | Dr | | | | 2½ 3 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 | 38.0 | 35.5 | 31.0 | 26.5 | 20.0 | 13.5 | 8.0 | 6.0 | in | | 4 | 4 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 | | | | | | | | | | | | | 5.0 | | | | | Standard | | | | | | | | | | | | | | | | | | Tabelle 6: General technical data | | DIN | ANSI | | | | | | | |-------------------------|----------------------------------|----------------------------|--|--|--|--|--|--| | Nominal size | DN 15 150 | NPS ½ 4 | | | | | | | | Nominal pressure | PN 16 40 | cl150 cl300 | | | | | | | | Temperature range | -10 °C +200 °C (optiona | I -60 °C / -80 °C +230 °C) | | | | | | | | Ball sealing | M-PTFE | | | | | | | | | Leakage rate | Leakage rate A according | g to DIN EN 12266-1, P12 | | | | | | | | Flanges | DIN EN 1092-1 | ASME B16.5 | | | | | | | | Packing | M-PTFE packing supp | oorted by disc springs | | | | | | | | Face to face dimensions | DIN 558, row 1 or 27 ASME B16.10 | | | | | | | | **Tabelle 7:** Materials | | DIN | ANSI | | | | | | | |--------------------|----------------------|-------------------|--|--|--|--|--|--| | Main body | 1.4408 | ASTM A351 CF8M | | | | | | | | Side body | 1.4408 / 1.4571 | ASTM A351 CF8M | | | | | | | | Ball | 1.4408 | ASTM A351 CF8M | | | | | | | | Shaft | 1.4462 | ASTM A182 Gr. F51 | | | | | | | | Seat rings | PT | FE | | | | | | | | Packing | M-PTFE packing | with disc springs | | | | | | | | Upper bearing bush | PTFE with | 25% glass | | | | | | | | Lower bearing bush | PTFE with 25% carbon | | | | | | | | | Body sealing | M-PTFE / graphite | | | | | | | | **Tabelle 8:** kvs and Cv coefficients | DN | 15 | 20 | 25 | 32 | 40 | 50 | 65 | 80 | 100 | 125 | 150 | |-----|-----|-----|----|---------|-----|-----|---------|-----|-----|------|------| | NPS | 1/2 | 3/4 | 1 | 11/4 1) | 1 ½ | 2 | 21/2 1) | 3 | 4 | 5 | 6 | | kvs | 12 | 23 | 49 | 80 | 116 | 178 | 291 | 422 | 610 | 954 | 1575 | | Cv | 14 | 27 | 57 | 93 | 135 | 207 | 338 | 491 | 709 | 1108 | 1830 | ¹⁾ On request # **Dimensions and weights** **Tabelle 9:** Dimensions in mm and weights in kg of the ball valve in DIN version | | DN | 15 | 20 | 25 | 32 | 40 | 50 | 6 | 5 | 80 | 10 | 00 | 125 | 150 | | | |--------|-------------------|------|-------|-------|-------|-------|-------|------|------|-------|-------|------|-------|------|-----|-----| | | PN | | | 4 | 0 | | | 16 | 40 | 40 | 16 | 40 | 1 | 6 | | | | FTF | Row 1 | 130 | 150 | 160 | 180 | 200 | 230 | 29 | 90 | 310 | 3 | 50 | - | - | | | | FIF | Row 27 | 115 | 120 | 125 | 130 | 140 | 150 | 17 | 70 | 180 | 19 | 90 | 325 | 350 | | | | | Α | 50 | 56 | 56 | 54 | 62.5 | 65.5 | 7 | 2 | 72.5 | 82 | 2.5 | 120 | 172 | | | | | B4 | - | - | - | - | - | - | - | | - | | - | 69 | 84 | | | | | В7 | - | - | - | - | - | - | - | | - | | - | 330 | 315 | | | | | ØD | 95 | 105 | 115 | 140 | 150 | 165 | 18 | 35 | 200 | 220 | 235 | 250 | 285 | | | | | E | 13 | 19 | 19 | 19 | 22 | 22 | 2 | 2 | 26 26 | | 31 | 37 | | | | | | F | 9 | 14 | 14 | 14 | 17 | 17 | 1 | 7 | 19 | 19 | | 19 | | 24 | 30 | | | H2 | 46.5 | 58 | 58 | 62 | 83 | 91 | 104 | 4.5 | 130.5 | 143.5 | | 198.5 | 223 | | | | | Н3 | - | - | - | - | - | - | - | | - | 143.5 | | - | | 369 | 405 | | | Hd | 98.5 | 109.5 | 109.5 | 113.5 | 143.5 | 151.5 | 16 | 55 | 177 | 19 | 90 | - | - | | | | | ØК | 65 | 75 | 85 | 100 | 110 | 125 | 14 | 15 | 160 | 180 | 190 | 210 | 250 | | | | | Lh | 151 | 155 | 155 | 155 | 250 | 250 | 25 | 50 | 550 | 5: | 50 | - | - | | | | | М | M5 | M6 | M6 | M6 | M6 | M6 | M | 16 | M8 | N | 18 | M10 | M12 | | | | r | nxØP | 4x14 | 4x14 | 4x14 | 4x18 | 4x18 | 4x18 | 4x18 | 8x18 | 8x18 | 8x18 | 8x22 | 8x18 | 8x22 | | | | | SW | 9 | 14 | 14 | 14 | 17 | 17 | 1 | 7 | 19 | 1 | 9 | 24 | 30 | | | | | O connec-
tion | F03 | F05 | F05 | F05 | F07 | F07 | FC |)7 | F10 | F. | 10 | F12 | F14 | | | | Weight | Row 1 | 2.6 | 4.5 | 5 | 8 | 9 | 12 | 15 | | 28 | 48 | 51 | - | - | | | | in kg | Row 27 | 2 | 4 | 4 | 7 | 7.5 | 10 | 1 | 3 | 23 | 33 | 35 | 64 | 100 | | | **Tabelle 10:** Dimensions in mm and weights in kg of the ball valve in ANSI version | NPS | | 1/2 | 3/4 | 1 | 1¼ | 1½ | 2 | 21/2 | 3 | 4 | |-------------|---------|--------|--------|--------|--------|--------|-------|--------|--------|--------| | DI /FTF | cl150 | 108 | 117 | 127 | 140 | 165 | 178 | 190 | 203 | 229 | | BL/FTF | cl300 | 140 | 152 | 165 | 178 | 190 | 216 | 241 | 283 | 305 | | | cl150 | F1 F | 56 | 54 | 49 | 62.5 | 62.5 | 72 | 79.5 | 82.5 | | Α | cl300 | 51.5 | 56 | 63.5 | 52 | 62.5 | 78.5 | /2 | 85.5 | 120 | | ØD | cl150 | 88.9 | 89.6 | 108 | 115 | 127 | 152.4 | 177.8 | 190.5 | 228.6 | | ØD | cl300 | 95.2 | 117.3 | 124 | 135 | 155.4 | 165.1 | 190 | 209.5 | 255 | | E | | 13 | 13 | 19 | 19 | 22 | 22 | 22 | 26 | 26 | | F | | 9 | 9.5 | 14 | 14 | 17 | 17 | 17 | 19 | 19 | | H2 | | 46.5 | 47.5 | 58 | 62 | 83 | 91 | 101.5 | 130.5 | 143 | | Hd | | 98.5 | 99.5 | 109.5 | 123.5 | 143.5 | 151.5 | 161.5 | 177 | 189.5 | | Lh | | 151 | 151 | 155 | 165 | 250 | 250 | 250 | 550 | 550 | | DIN/ISO con | nection | F03 | F04 | F05 | F05 | F07 | F07 | F07 | F10 | F10 | | ØK | cl150 | 60.3 | 69.9 | 79.4 | 88.9 | 98.4 | 120.6 | 139.7 | 152.4 | 190,5 | | nxØP | C1150 | 4x15.9 | 4x15.7 | 4x15.9 | 4x15.9 | 4x15.9 | 4x19 | 4x19.1 | 4x19 | 4x19.1 | | ØK | cl300 | 66.7 | 82.6 | 88.9 | 98.4 | 114.5 | 127 | 149.2 | 168.3 | 200 | | nxØP | C1300 | 4x15.9 | 4x19 | 4x19 | 4x19.1 | 4x22.2 | 8x19 | 8x22.3 | 8x22.2 | 4x22.3 | | М | | M5 | M5 | M6 | M6 | M6 | M6 | M6 | M8 | M8 | | SW | | 9 | 9 | 14 | 14 | 17 | 17 | 17 | 19 | 19 | | Weight | cl150 | 2.5 | 2.7 | 4 | 4.8 | 8 | 9 | 17.2 | 20 | 42 | | in kg | cl300 | 3 | 3.7 | 5 | 6.4 | 9 | 11 | 19.2 | 25 | 51.3 | **Tabelle 11:** Max. permissible torque, required torque and breakaway torque | Differer | ntial pres | sure | Δp in bar | 0 | 5 | 10 | 16 | 20 | 25 | 30 | 40 | only ANSI
50 | |----------|------------|---------------------------|-----------|-----|-----|-----|-----|-----------|-----|-----|-----|-----------------| | DN | NPS | Md max.
Shaft in
Nm | Md in Nm | | | | | Mdl in Nm | | | | | | 15 | 1/2 | 81 | 3 | 5 | 6 | 7 | 7 | 8 | 9 | 10 | 11 | 13 | | 20 | - | 338 | 5 | 10 | 12 | 15 | 17 | 19 | 21 | 24 | 28 | 33 | | - | 3/4 | 81 | 4 | 10 | 12 | 15 | 17 | 19 | 21 | 24 | 28 | 33 | | 25 | 1 | 338 | 5 | 10 | 12 | 14 | 17 | 19 | 21 | 24 | 28 | 33 | | 32 | 1¼ | 338 | 8 | 15 | 18 | 21 | 25 | 28 | 31 | 34 | 40 | 46 | | 40 | 11/2 | 654 | 10 | 20 | 24 | 28 | 33 | 36 | 40 | 44 | 52 | 60 | | 50 | 2 | 654 | 15 | 30 | 35 | 41 | 47 | 52 | 57 | 62 | 73 | 84 | | 65 | 21/2 | 654 | 20 | 45 | 54 | 63 | 73 | 80 | 89 | 98 | 115 | 133 | | 80 | 3 | 988 | 25 | 60 | 71 | 81 | 94 | 102 | 113 | 123 | 144 | - | | 100 | 4 | 988 | 40 | 90 | 110 | 130 | 154 | 171 | 191 | 211 | 251 | - | | 125 | 5 | 2170 | 80 | 170 | 232 | 294 | 368 | 418 | 480 | - | - | - | | 150 | 6 | 3992 | 110 | 240 | 300 | 360 | 432 | - | - | - | - | - | The above listed torques are based on the opening of the ball valve at the differential pressure for water with corrosion inhibitors added at room temperature and with one-day non-actuation. Since temperature, pressure, process medium, switching frequencies and idle times considerably affect the arising torques, corresponding factors need to be taken into consideration on selecting and sizing the actuator. In case of doubt, contact Pfeiffer. The listed maximum permissible torques apply to the standard material listed in Table 3. ## Selection and sizing of the ball valve - 1. Determine the required nominal size - 2. Select valve in accordance to table 2 rsp. 3 and by pressure-temperature diagram - 3. Select the appropriate actuator using table 7 - 4. Select additional equipment. #### **Ordering text** BR 26d Ball Valve in stainless steel Nominal size: DN/NPS.... Nominal pressure: PN/Class.... Live-loaded sealing system or with floating ball Fire-safe version, optional special version Actuator (brand name): Supply pressure: bar Fail-safe position: Limit switch (brand name): Solenoid valve (brand name): Positioner: Others: ## **Associated data sheets** - Associated Mounting and Operating Instructions ► EB 26d - Associated Safety Manual ► SH 26 • For pneumatic Quarter-turn actuator ► TB 31a ## **i** Note All relevant details regarding the version ordered, which deviate from the specified version in this technical description data, can be taken if required, from the corresponding order confirm